class Solution {public: int uniquePaths(int m, int n) { int (*dp)[101] = new int[101][101]; for (int i=0;i<101;i++) dp[0][i] = 0; for (int i=0;i<101;i++) dp[i][0] = 0; dp[0][1] = 1; for (int i=1; i<=m; i++) { for (int j=1; j<=n; j++) { // to reach (i,j), we can move from // 1. (i, j-1), move right 1 block // 2. (i-1, j), move down 1 block dp[i][j] = dp[i][j-1] + dp[i-1][j]; } } return dp[m][n]; }};
1. 存在直接的计算公式组合数C(m+n-2, n-1),在m+n-2步移动中选取n-1或m-1种为相应维度上的移动方式(向右或向下)
2. 采用动态规划,要是学高级数据结构时老师能先举个这样简单的例子就好了。
dp[i][j]代表到达坐标(i, j)(i、j从1开始编号)的路径种数,因为题目规定只能向右或者向下移动,所以在dp[i][j]的上一步,其坐标肯定是
- (i, j-1), 向右移动得到(i, j)
- (i-1, j), 向下移动得到(i, j)
那么到达(i, j)的路径总数就是这两种情况的和即dp[i][j] = dp[i-1][j] + dp[i][j-1]
不过题目虽然说 "m and n will be at most 100.", 但是其测试数据显然没有达到这个范围,因为返回的是int类型,而这个问题的解数目会迅速增加,(100, 100)时数量级别是10的58次方,或许答案可以改为mod一个数后的取值。
第二轮:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
可以把上面dp的数组简化到一维:
// 13:10class Solution {public: int uniquePaths(int m, int n) { if (m <= 0 || n <= 0) return 0; int* dp = new int[n+1]; for(int i=0; i<=n; i++) dp[i] = 0; dp[1] = 1; for (int i=0; i